login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) is the total number of symmetric peaks in all partitions of n with exactly k blocks, n >= 3, 2 <= k <= n-1.
1

%I #101 Jun 07 2024 07:25:55

%S 1,3,2,8,12,3,20,54,30,4,48,215,205,60,5,112,799,1185,580,105,6,256,

%T 2842,6230,4585,1365,168,7,576,9812,30828,32256,14140,2828,252,8,1280,

%U 33165,146355,210378,128037,37170,5334,360,9,2816,110361,674535,1301860,1060815,420756,86730,9360,495,10

%N T(n, k) is the total number of symmetric peaks in all partitions of n with exactly k blocks, n >= 3, 2 <= k <= n-1.

%H W. Asakly and Noor Kezil, <a href="https://arxiv.org/abs/2401.01687">Counting symmetric and non-symmetric peaks in a set partition</a>, arXiv:2401.01687 [math.CO], 2024.

%F T(n,k) = (k-1) * Stirling2(n-1, k) + Sum_{j=2..k} binomial(j, 2) * Sum_{i=3..n-k} j^(i-3) * Stirling2(n-i, k).

%e The triangle T(n, k) begins:

%e 3| 1

%e 4| 3 2

%e 5| 8 12 3

%e 6| 20 54 30 4

%e 7| 48 215 205 60 5

%e 8| 112 799 1185 580 105 6

%e 9| 256 2842 6230 4585 1365 168 7

%e 10| 576 9812 30828 32256 14140 2828 252 8

%e .

%e T(5,3) represents the partitions of the set {1,2,3,4,5} into 3 blocks:

%e The canonical form of a set partition of [n] is an n-tuple indicating the block in which each integer occurs. The symmetric peaks in the canonical sequential form are listed:

%e (1, 2, 1, 1, 3) -> 1 symmetric peak (1, 2, 1)

%e (1, 2, 1, 3, 1) -> 2 symmetric peaks, (1, 2, 1) and (1, 3, 1)

%e (1, 2, 1, 2, 3) -> 1 symmetric peak, (1, 2, 1)

%e (1, 2, 1, 3, 2) -> 1 symmetric peak, (1, 2, 1)

%e (1, 2, 1, 3, 3) -> 1 symmetric peak, (1, 2, 1)

%e (1, 2, 1, 3, 1) -> 2 symmetric peaks, (1, 2, 1) and (1, 3, 1)

%e (1, 2, 2, 3, 2) -> 1 symmetric peak, (2, 3, 2)

%e (1, 2, 3, 2, 1) -> 1 symmetric peak, (2, 3, 2)

%e (1, 2, 3, 2, 2) -> 1 symmetric peak, (2, 3, 2)

%e (1, 2, 3, 2, 3) -> 1 symmetric peak, (2, 3, 2).

%p T := (n, k) -> (k-1) * Stirling2(n-1, k) + add(binomial(j, 2) * add(j^(i-3) * Stirling2(n-i, k),i=3..n-k), j = 2..k): seq(print(seq(T(n, k), k = 2..n-1)), n = 3..10); # _Peter Luschny_, Jun 06 2024

%t T[n_, k_] := (k-1) * StirlingS2[n-1, k] + Sum[Binomial[j, 2] * Sum[j^(i-3) * StirlingS2[n-i, k], {i, 3, n-k}], {j, 2, k}];

%t Table[T[n, k], {n, 3, 12}, {k, 2, n-1}] // Flatten

%o (PARI) T(n, k) = (k-1) * stirling(n-1, k, 2) + sum(j=2, k, binomial(j, 2) * sum(i=3, n-k, j^(i-3) * stirling(n-i, k, 2))); \\ _Michel Marcus_, Jun 06 2024

%Y Cf. A008277 (Stirling2).

%Y Cf. A001792 (1st column), A027480 (subdiagonal).

%K nonn,tabl

%O 3,2

%A _W. Asakly_, Jun 01 2024