login
A373212
Signature sequence of log(2).
0
1, 1, 2, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 10, 1, 8, 6, 4, 2, 9, 7, 5, 3, 10, 1, 8, 6, 4, 11, 2, 9, 7, 5, 3, 10, 1, 8, 6, 4, 11, 2, 9, 7, 5, 12, 3, 10, 1, 8
OFFSET
1,3
COMMENTS
Signature sequence of x = A002162: defined by sorting the values of i+j*x, i,j>=1, and collecting the list of the i in that order.
Starts similar to A023115, because log(2)=0.693147... is close to 1/sqrt(2) = 0.7071...
MAPLE
SIGSEQsort := proc(l1::list, l2::list)
if op(1, l1) < op(1, l2) then
return true ;
else
return false ;
end if
end proc:
SIGSEQ := proc(x, vmax)
local TBsrtd, i, j ;
TBsrtd := [] ;
for i from 1 do
if i > vmax then
break ;
end if;
for j from 1 do
if evalf(i+j*x) > vmax then
break ;
end if;
TBsrtd := [op(TBsrtd), [evalf(i+j*x), i]] ;
end do:
end do:
sort(TBsrtd, SIGSEQsort) ;
[seq(op(2, v), v=%)] ;
end proc:
Digits := 100 ;
SIGSEQ(log(2), 50.0) ;
CROSSREFS
Cf. A002162.
Sequence in context: A098053 A272907 A128117 * A023115 A194436 A061336
KEYWORD
nonn
AUTHOR
R. J. Mathar, May 28 2024
STATUS
approved