login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372873
Triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of descents.
1
1, 0, 2, 0, 1, 4, 0, 0, 6, 8, 0, 0, 1, 24, 16, 0, 0, 0, 10, 80, 32, 0, 0, 0, 1, 60, 240, 64, 0, 0, 0, 0, 14, 280, 672, 128, 0, 0, 0, 0, 1, 112, 1120, 1792, 256, 0, 0, 0, 0, 0, 18, 672, 4032, 4608, 512, 0, 0, 0, 0, 0, 1, 180, 3360, 13440, 11520, 1024
OFFSET
1,3
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 11.
FORMULA
G.f.: x*y*(1 - 2*x*y)/(1 - 4*x*y - x^2*y + 4*x^2*y^2).
T(n,k) = 2^(2*k-n-1)*binomial(n-1, 2*(n-k)).
T(n,n) = A000079(n-1).
T(n,n-1) = A001788(n-2).
T(n,1) = A000007(n-1).
T(n,2) = A033322(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).
EXAMPLE
The triangle begins:
1;
0, 2;
0, 1, 4;
0, 0, 6, 8;
0, 0, 1, 24, 16;
0, 0, 0, 10, 80, 32;
0, 0, 0, 1, 60, 240, 64;
0, 0, 0, 0, 14, 280, 672, 128;
0, 0, 0, 0, 1, 112, 1120, 1792, 256;
...
T(4,3) = 6 since there 6 flattened Catalan words of length 4 with 3 runs of descents: 0010, 0100, 0101, 0110, 0120, and 0121.
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[x*y*(1-2*x*y)/(1-4*x*y-x^2*y+4x^2*y^2), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* or *)
T[n_, k_]:=2^(2*k-n-1)*Binomial[n-1, 2*(n-k)]; Table[T[n, k], {n, 11}, {k, n}]//Flatten
CROSSREFS
Sequence in context: A099096 A099089 A121298 * A212206 A247489 A208756
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 15 2024
STATUS
approved