login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372868
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of weak ascents, with 1 <= k <= ceiling(n/2).
2
1, 2, 4, 1, 8, 6, 16, 24, 1, 32, 80, 10, 64, 240, 60, 1, 128, 672, 280, 14, 256, 1792, 1120, 112, 1, 512, 4608, 4032, 672, 18, 1024, 11520, 13440, 3360, 180, 1, 2048, 28160, 42240, 14784, 1320, 22, 4096, 67584, 126720, 59136, 7920, 264, 1, 8192, 159744, 366080, 219648, 41184, 2288, 26
OFFSET
1,2
COMMENTS
With offset 0 for the variable k, T(n,k) is the number of flattened Catalan words of length n with exactly k peaks. In such case, T(4,1) = 6 corresponds to 6 flattened Catalan words of length 4 with 1 peak: 0010, 0100, 0110, 0101, 0120, and 0121. See Baril et al. at page 20.
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 8-9.
FORMULA
G.f.: (1-2*x)*x*y/(1 - 4*x + 4*x^2 - x^2*y).
T(n,k) = 2^(n-2*k+1)*binomial(n-1, 2*k-2).
T(n,1) = A000079(n-1).
T(n,2) = A001788(n-2).
T(n,3) = A003472(n-1).
T(n,4) = A002409(n-7).
T(n,5) = A140325(n-9).
T(n,6) = A172242(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).
EXAMPLE
The irregular triangle begins:
1;
2;
4, 1;
8, 6;
16, 24, 1;
32, 80, 10;
64, 240, 60, 1;
128, 672, 280, 14;
256, 1792, 1120, 112, 1;
...
T(4,2) = 6 since there are 6 flattened Catalan words of length 4 with 2 runs of weak ascents: 0010, 0100, 0101, 0110, 0120, and 0121.
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[(1-2x)*x*y/(1-4*x+4*x^2-x^2*y), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 14}, {k, Ceiling[n/2]}] //Flatten (* or *)
T[n_, k_]:=2^(n-2k+1)Binomial[n-1, 2k-2]; Table[T[n, k], {n, 14}, {k, Ceiling[n/2]}]
CROSSREFS
Cf. A000079, A001788, A002409, A003472, A007051 (row sums), A110654 (row lengths), A140325, A172242.
Sequence in context: A065260 A257794 A345881 * A091894 A127151 A193034
KEYWORD
nonn,tabf
AUTHOR
Stefano Spezia, May 15 2024
STATUS
approved