OFFSET
1,3
LINKS
Seiichi Manyama, Antidiagonals n = 1..140, flattened
FORMULA
T(n,k) ~ (3/Pi^2) * c(k) * n^2, where c(k) = k * A007947(k)/A048250(k) = k * A332881(k) / A332880(k) is the multiplicative function defined by c(p^e) = p^(e+1)/(p+1). - Amiram Eldar, May 10 2024
EXAMPLE
Square array T(n,k) begins:
1, 1, 2, 2, 4, 2, 6, ...
2, 3, 4, 6, 8, 6, 12, ...
4, 5, 10, 10, 16, 12, 24, ...
6, 9, 14, 18, 24, 20, 36, ...
10, 13, 22, 26, 44, 28, 60, ...
12, 17, 28, 34, 52, 40, 72, ...
18, 23, 40, 46, 76, 52, 114, ...
MATHEMATICA
T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 10 2024 *)
PROG
(PARI) T(n, k) = sum(j=1, n, eulerphi(k*j));
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 07 2024
STATUS
approved