login
Lowest prime p in a ladder of 4 consecutive primes p, p+2, p+6, p+14.
2

%I #13 May 19 2024 12:03:18

%S 1997,2237,2267,2657,6197,6827,8087,17027,17387,19427,21017,21377,

%T 22277,22637,23057,24107,29567,37307,43397,43787,53087,55337,56807,

%U 58907,62297,65537,65837,78887,81017,82007,82217,89597,90017,91367,93887,95087,97547,105527,108287,110567,112247,113357

%N Lowest prime p in a ladder of 4 consecutive primes p, p+2, p+6, p+14.

%e 2267, 2269, 2273 and 2281 are consecutive primes with gaps of 2, 4 and 8, so 2267 is in the sequence.

%t First /@ Parallelize[

%t Select[Table[NextPrime[Prime@i, Range@4], {i, 10^5}],

%t Differences@# == {2, 4, 8} &]] (* _Mikk Heidemaa_, Apr 25 2024 *)

%Y Subsequence of A022004. A372248 is a subsequence.

%K nonn

%O 1,1

%A _R. J. Mathar_, Apr 24 2024