Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 19 2024 12:01:49
%S 1,-1,1,3,-1,2,-1,7,0,6,27,11,26,12,24,119,151,120,150,120,120,1203,
%T 1139,1202,1140,1200,1080,720,11759,11887,11760,11886,11760,11760,
%U 10080,5040,136587,136331,136586,136332,136584,136080,131040,100800,40320,1771559,1772071,1771560,1772070
%N Triangular array T(n,k) read by rows: column k is the expansion of e.g.f: exp(-2*x)*(exp(x)-1)^k/(2-exp(x)).
%F T(n, k) = Sum_{m=0..n} ((-1)^(1+m+n)*binomial(k, n)*(2^(k - n) - 1)*A084416(m, k - 1)), for k > 0.
%F T(n, 0) = A344037(n).
%F T(n, 1) = A052841(n) - A344037(n).
%F T(n, 2) = A344037(n) - 2*A052841(n) + A000670(n).
%e Triangle T(n, k) starts:
%e [0] 1;
%e [1] -1, 1;
%e [2] 3, -1, 2;
%e [3] -1, 7, 0, 6;
%e [4] 27, 11, 26, 12, 24;
%e [5] 119, 151, 120, 150, 120, 120;
%e [6] 1203, 1139, 1202, 1140, 1200, 1080, 720;
%e [7] 11759, 11887, 11760, 11886, 11760, 11760, 10080, 5040;
%e [8] 136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320;
%o (PARI) T(n, k) = sum(m=0, n, ((-1)^((k > 0)+m+n)*binomial(n, m)*(2^(n-m)-(k > 0))*sum(h=max(k-1,0), m, h!*stirling(m, h, 2))))
%Y Cf. A000670, A052841, A084416, A341091, A344037.
%K sign,easy,tabl
%O 0,4
%A _Thomas Scheuerle_, Apr 26 2024