login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371983
Decimal expansion of Gamma(1/30).
1
2, 9, 4, 5, 4, 7, 7, 9, 7, 4, 5, 6, 9, 9, 6, 9, 4, 0, 1, 9, 6, 9, 6, 2, 0, 8, 2, 8, 8, 6, 3, 8, 3, 4, 5, 7, 3, 4, 7, 0, 1, 8, 7, 3, 6, 0, 5, 5, 7, 2, 9, 7, 1, 1, 0, 4, 6, 5, 6, 5, 4, 1, 5, 5, 6, 7, 4, 9, 8, 8, 0, 5, 4, 5, 9, 9, 0, 5, 0, 1, 2, 0, 8, 2, 1, 9, 5, 7, 9, 4, 8, 5, 0, 9, 6, 5, 2, 1, 2, 9, 3, 8, 7, 6, 7
OFFSET
2,1
LINKS
Albert Nijenhuis, Small Gamma Products with Simple Values, arXiv:0907.1689v1 [math.CA], 2009.
R. Vidunas, Expressions for values of the Gamma function, arxiv:math/0403510 [math.CA], 2004.
FORMULA
Equals 3^(9/20) * sqrt(5 + sqrt(5)) * sqrt(sqrt(15) + sqrt(5 + 2*sqrt(5))) * Gamma(1/3) * Gamma(1/5) / (sqrt(Pi) * 2^(16/15) * 5^(1/6)).
Equals 2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma(1/5) * Gamma(1/3) / ((10 + sqrt(5) - sqrt(75 + 30*sqrt(5)))^(1/4) * sqrt(Pi)).
Equals 8*Pi^2 / (Gamma(17/30) * Gamma(19/30) * Gamma(23/30)).
Equals Gamma(7/30) * Gamma(11/30) * Gamma(13/30) / (2*Pi*A019815).
EXAMPLE
29.4547797456996940196962082886383457347018736055729711046565415567498...
MAPLE
evalf(GAMMA(1/30), 130); # Alois P. Heinz, Apr 15 2024
MATHEMATICA
RealDigits[Gamma[1/30], 10, 120][[1]]
RealDigits[2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma[1/5] * Gamma[1/3] / ((10 + Sqrt[5] - Sqrt[75 + 30*Sqrt[5]])^(1/4) * Sqrt[Pi]), 10, 120][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Apr 15 2024
STATUS
approved