login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371861
Decimal expansion of Integral_{x=0..1} sqrt(1 - x^3) dx.
0
8, 4, 1, 3, 0, 9, 2, 6, 3, 1, 9, 5, 2, 7, 2, 5, 5, 6, 7, 0, 5, 0, 1, 1, 4, 4, 7, 4, 3, 0, 1, 7, 6, 4, 8, 1, 2, 7, 7, 8, 1, 3, 3, 2, 3, 2, 5, 4, 3, 9, 1, 6, 5, 7, 7, 0, 9, 1, 9, 6, 3, 9, 2, 2, 4, 5, 7, 7, 0, 8, 5, 9, 5, 8, 9, 0, 8, 1, 9, 7, 7, 6, 4, 2, 5, 1, 1, 3, 5, 9, 8, 9, 1, 0, 1, 4, 8, 7, 0, 8, 2, 3, 3
OFFSET
0,1
FORMULA
Equals sqrt(Pi) * Gamma(1/3) / (6 * Gamma(11/6)).
Equals sqrt(3) * Gamma(1/3)^3 / (5*Pi*2^(4/3)). - Vaclav Kotesovec, Apr 09 2024
Equals 3*A118292/10. - Hugo Pfoertner, Apr 09 2024
EXAMPLE
0.8413092631952725567050114474301764812778...
MATHEMATICA
RealDigits[Sqrt[Pi] Gamma[1/3]/(6 Gamma[11/6]), 10, 103][[1]]
RealDigits[Sqrt[3] * Gamma[1/3]^3 / (5*Pi*2^(4/3)), 10, 103][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
PROG
(PARI) intnum(x=0, 1, sqrt(1 - x^3)) \\ Michel Marcus, Apr 10 2024
CROSSREFS
Decimal expansions of Integral_{x=0..1} sqrt(1 - x^k) dx: A003881 (k=2), this sequence (k=3), A225119 (k=4).
Sequence in context: A228496 A259616 A247036 * A202320 A011267 A049469
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 09 2024
STATUS
approved