login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371768
a(n) = n! * [x^n] (log(2*x - 1) - log(x - 1) - log(x + 1)) / (x - 1). Row sums of A371685.
1
0, 2, 6, 34, 220, 1868, 18648, 222696, 3061728, 48199392, 852857280, 16813212480, 365177928960, 8671294183680, 223409173317120, 6207795845798400, 185021865565286400, 5887763630809804800, 199220359130518118400, 7141874528908565913600, 270391380094261923840000
OFFSET
0,2
MAPLE
assume(x > 0): egf := (log(2*x - 1) - log(x - 1) - log(x + 1))/(x - 1):
ser := series(egf, x, 24): seq(n!*coeff(ser, x, n), n = 0..20);
# Recurrence:
a := proc(n) option remember; if n < 4 then return [0, 2, 6, 34][n+1] fi;
(2*(n-4)^4 + 14*(n-4)^3 + 34*(n-4)^2 + 34*n - 124)*a(n-4) - (3*(n-4)^3 + 19*(n-4)^2 + 38*n - 128)*a(n-3) - ((n-4)^2 + 7*n - 16)*a(n-2) + (3*n - 2)*a(n-1) end:
seq(a(n), n = 0..20);
CROSSREFS
Cf. A371685.
Sequence in context: A018953 A009199 A052824 * A019029 A019032 A108424
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 09 2024
STATUS
approved