login
A371516
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^3.
5
1, 3, 15, 82, 477, 2901, 18235, 117555, 773085, 5166478, 34987170, 239570655, 1655933060, 11538839130, 80971109712, 571702698185, 4058556404958, 28951715755830, 207424064434502, 1491898838023884, 10768487956456506, 77977009814421534, 566310026687320290
OFFSET
0,2
FORMULA
a(n) = 3 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+2,k)/(2*k+3) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+3,k)/(k+1).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A307678.
PROG
(PARI) a(n) = 3*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+2, k)/(2*k+3));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 26 2024
STATUS
approved