login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371312
Expansion of e.g.f. Product_{k>=1} 1 / (1 - x^k/k!)^2.
1
1, 2, 8, 38, 228, 1562, 12386, 109286, 1073988, 11545994, 135393438, 1714890806, 23380747506, 341014477390, 5303722839850, 87582446980418, 1531259993710468, 28254163132485930, 548854481037814382, 11196310379931318758, 239346426732701009838, 5350768890908294837294
OFFSET
0,2
COMMENTS
Exponential self-convolution of A005651.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A005651(k) * A005651(n-k).
a(n) ~ A247551^2 * n! * n. - Vaclav Kotesovec, Mar 24 2024
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k/k!)^2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
Sequence in context: A275707 A058786 A096654 * A269509 A307725 A308205
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 24 2024
STATUS
approved