OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
Joseph Likar, Table of n, a(n) for n = 1..10000
EXAMPLE
The terms together with their prime indices begin:
2: {1}
6: {1,2}
10: {1,3}
22: {1,5}
34: {1,7}
42: {1,2,4}
62: {1,11}
82: {1,13}
118: {1,17}
134: {1,19}
166: {1,23}
218: {1,29}
230: {1,3,9}
254: {1,31}
314: {1,37}
358: {1,41}
382: {1,43}
390: {1,2,3,6}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], SameQ[prix[#], Divisors[Last[prix[#]]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 21 2024
STATUS
approved