OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} |Stirling1(n-k,k)|/(n-2*k+1)!.
a(n) ~ sqrt(2 - r*(2*r+1)) * n^(n-1) / (exp(n) * r^n), where r = 0.4599065470184992266076522060382204730855199647380... is the root of the equation 1/r + 2*r*log(r) = 1+r. - Vaclav Kotesovec, Mar 11 2024
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = 1 - x*Log[1 - x*A[x]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 11 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, abs(stirling(n-k, k, 1))/(n-2*k+1)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 11 2024
STATUS
approved