login
A370880
Natural numbers repeated 3 times are taken in parts of successive lengths 1,2,3,..., and a(n) is the sum of the numbers in the part with length n.
1
1, 2, 6, 13, 23, 39, 61, 89, 126, 172, 227, 294, 373, 464, 570, 691, 827, 981, 1153, 1343, 1554, 1786, 2039, 2316, 2617, 2942, 3294, 3673, 4079, 4515, 4981, 5477, 6006, 6568, 7163, 7794, 8461, 9164, 9906, 10687, 11507, 12369, 13273, 14219, 15210, 16246
OFFSET
1,2
FORMULA
a(n) = Sum_{i=A000217(n-1)+1..A000217(n)} A002264(i+2).
Let r = n mod 3, then we get
a(n) = n*(n^2+3)/6 if r = 0;
(n*(n^2+3)+2)/6 if r = 1;
(n*(n^2+3)-2)/6 if r = 2.
G.f.: x*(x^4-x^3+3*x^2-x+1)/((x^2+x+1)*(x-1)^4).
EXAMPLE
The parts and resulting sums begin:
Part Sum = a(n)
n=1: 1, ....................... 1
n=2: 1, 1, .................... 2
n=3: 2, 2, 2, ................. 6
n=4: 3, 3, 3, 4, .............. 13
n=5: 4, 4, 5, 5, 5, ........... 23
n=6: 6, 6, 6, 7, 7, 7, ........ 39
n=7: 8, 8, 8, 9, 9, 9, 10, ..... 61
MATHEMATICA
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 2, 6, 13, 23, 39}, 46] (* James C. McMahon, Apr 22 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nicolay Avilov, Mar 04 2024
STATUS
approved