login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370736
a(n) = 4^n * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/4).
3
1, 2, 2, 76, -106, 1788, -1516, 57176, -276634, 2270444, -10094212, 97699752, -664173444, 4819718488, -33236872088, 259931360688, -1894783205754, 13983087008588, -103270227527444, 779496572387208, -5855545477963244, 44016069418771976, -331519650617078376, 2514477954420678352
OFFSET
0,2
FORMULA
G.f.: Product_{k>=1} (1 + 2*(4*x)^k)^(1/4).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/2)^(1/4) * 8^n / (4 * Gamma(3/4) * n^(5/4)).
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[1+2*x^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 4^Range[0, nmax]
nmax = 25; CoefficientList[Series[Product[1+2*(4*x)^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
CROSSREFS
Cf. A032302 (m=1), A370709 (m=2), A370716 (m=3), A370737 (m=5).
Sequence in context: A306063 A028372 A130678 * A230054 A303569 A156523
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Feb 28 2024
STATUS
approved