login
A370586
Number of subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).
17
0, 0, 1, 2, 2, 6, 8, 20, 12, 20, 44, 116, 88, 320, 380, 508, 264, 1792, 968, 4552, 3136, 5600, 10056, 27896, 11792, 16384, 46688, 19584, 48288, 198528, 110928, 507984, 99648, 463552, 859376, 821136, 470688, 3730368, 4033920, 4651296, 2932512, 19078464
OFFSET
0,4
EXAMPLE
The a(0) = 0 through a(7) = 20 subsets:
. . {2} {3} {4} {5} {6} {7}
{2,3} {3,4} {2,5} {2,6} {2,7}
{3,5} {3,6} {3,7}
{4,5} {4,6} {4,7}
{2,3,5} {5,6} {5,7}
{3,4,5} {2,5,6} {6,7}
{3,5,6} {2,3,7}
{4,5,6} {2,5,7}
{2,6,7}
{3,4,7}
{3,5,7}
{3,6,7}
{4,5,7}
{4,6,7}
{5,6,7}
{2,3,5,7}
{2,5,6,7}
{3,4,5,7}
{3,5,6,7}
{4,5,6,7}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], MemberQ[#, n]&&Length[Select[Tuples[If[#==1, {}, First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]], {n, 0, 10}]
CROSSREFS
First differences of A370582, complement A370583, cf. A370584.
Maximal choosable sets are counted by A370585.
The complement is counted by A370587.
For a unique choice we have A370588.
For binary indices instead of prime factors we have A370639.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.
Sequence in context: A054153 A000673 A355640 * A276425 A129383 A052957
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 26 2024
EXTENSIONS
a(19)-a(41) from Alois P. Heinz, Feb 27 2024
STATUS
approved