login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370373
T(n, k) is the total number of non-symmetric peaks in all partitions of n with exactly k blocks, n >= 4, 3 <= k <= n-1.
0
1, 6, 3, 27, 30, 6, 108, 205, 90, 10, 405, 1188, 870, 210, 15, 1458, 6279, 6888, 2730, 420, 21, 5103, 31306, 48622, 28308, 7070, 756, 28, 17496, 149985, 318726, 256914, 92988, 16002, 1260, 36, 59049, 698256, 1984950, 2136150, 1054305, 260316, 32760, 1980, 45, 196830
OFFSET
4,2
LINKS
W. Asakly and Noor Kezil, Counting symmetric and non-symmetric peaks in a set partition, arXiv:2401.01687 [math.CO], 2024.
FORMULA
T(n,k) = binomial(k-1, 2) * Stirling2(n-1, k) + 2 * Sum_{j=3..k} binomial(j, 3) * Sum_{i=3..n-k} j^(i-3) * Stirling2(n-i, k).
EXAMPLE
The triangle T(n, k) begins:
4| 1
5| 6 3
6| 27 30 6
7| 108 205 90 10
8| 405 1188 870 210 15
9| 1458 6279 6888 2730 420 21
10| 5103 31306 48622 28308 7070 756 28
.
T(5,3) represents the partitions of the set {1,2,3,4,5} into 3 blocks:
The canonical form of a set partition of [n] is an n-tuple indicating the block in which each integer occurs. The non-symmetric peaks in the canonical sequential form are listed:
(1, 2, 3, 1, 1) -> 1 non-symmetric peak, (2, 3, 1)
(1, 2, 3, 1, 2) -> 1 non-symmetric peak, (2, 3, 1)
(1, 2, 3, 1, 3) -> 1 non-symmetric peak, (2, 3, 1)
(1, 2, 2, 3, 1) -> 1 non-symmetric peak, (2, 3, 1)
(1, 1, 2, 3, 1) -> 1 non-symmetric peak, (2, 3, 1)
(1, 2, 1, 3, 2) -> 1 non-symmetric peak, (1, 3, 2)
MAPLE
T := (n, k) -> binomial(k-1, 2) * Stirling2(n-1, k) + 2 * add(binomial(j, 3) * add(j^(i-3) * Stirling2(n-i, k), i=3..n-k), j = 3..k): seq(print(seq(T(n, k), k = 3..n-1)), n = 4..10);
MATHEMATICA
T[n_, k_] := Binomial[k-1, 2] * StirlingS2[n-1, k] + 2 * Sum[Binomial[j, 3] * Sum[j^(i-3) * StirlingS2[n-i, k], {i, 3, n-k}], {j, 3, k}]; Table[T[n, k], {n, 4, 12}, {k, 3, n-1}]
PROG
(PARI) T(n, k) = binomial(k-1, 2) * stirling(n-1, k, 2) + 2 * sum(j=3, k, binomial(j, 3) * sum(i=3, n-k, j^(i-3) * stirling(n-i, k, 2)));
CROSSREFS
Cf. A008277 (Stirling2).
Cf. A373288.
Cf. A027471 (1st column), A033487 (subdiagonal).
Sequence in context: A294032 A088697 A039631 * A355867 A287510 A282418
KEYWORD
nonn,tabl
AUTHOR
Noor Kezil, Jun 07 2024
STATUS
approved