OFFSET
0,2
COMMENTS
x = A090550 = 1 + 3*phi = 5.854101966..., where phi is the golden ratio.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,0,-5).
FORMULA
a(n) = 6*a(n-1) - 5*a(n-3), a(0) = 1, a(1) = 5, a(2) = 29.
a(n) = 5*a(n-1) + 5*a(n-2) - 1.
a(n) = (4*(5-2*sqrt(5))*((5-3*sqrt(5))/2)^n + 4*(5+2*sqrt(5))*((5+3*sqrt(5))/2)^n + 5)/45.
G.f.: (1 - x - x^2)/(1 - 6*x + 5*x^3).
a(n) = Sum_{k = 0..n} A370174(n,k)*4^k.
EXAMPLE
a(0) = 1, a(1) = floor(x) = 5 where x = (5+3*sqrt(5))/2.
a(2) = floor(5*x) = 29, a(3) = floor(29*x) = 169.
MATHEMATICA
NestList[Floor[#*(5 + 3*Sqrt[5])/2] &, 1, 30] (* or *)
LinearRecurrence[{6, 0, -5}, {1, 5, 29}, 30] (* Paolo Xausa, May 25 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 18 2024
STATUS
approved