OFFSET
1,2
LINKS
Bernard Candelpergher and Marc-Antoine Coppo, A new class of identities involving Cauchy numbers, harmonic numbers and zeta values, The Ramanujan Journal, Vol. 27 (2012), pp. 305-328; alternative link.
István Mező, Problem 11793, Problems and Solutions, The American Mathematical Monthly, Vol. 121, No. 7 (2014), p. 648; A Series with Zetas, Solution to Problem 11793 by FAU Problem Solving Group, ibid., Vol. 123, No. 6 (2016), p. 620.
Michael Ian Shamos, A catalog of the real numbers (2011), p. 616.
Roberto Tauraso, Problem 11793.
FORMULA
Equals Integral_{x>=1} H(x)/x^2 dx, where H(x) is the harmonic number for real variable x (Shamos, 2011).
Equals -zeta'(2) + Sum_{k>=3} (-1)^(k+1)*zeta(k)/(k-2) (Mező, 2014).
Equals Sum_{k>=1} lambda(k)*H(k)/(k^2*k!) + 1 + zeta(3) - gamma * zeta(2), where lambda(k) = abs(A006232(k)/A006233(k)) is the n-th non-alternating Cauchy number, H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma is Euler's constant (A001620) (Candelpergher and Coppo, 2012). - Amiram Eldar, Mar 18 2024
EXAMPLE
1.80075505600528299149660601421484318144566378381841...
MAPLE
evalf(sum((-1)^(k+1)*Zeta(k)/(k-2), k = 3 .. infinity) - Zeta(1, 2), 120)
MATHEMATICA
RealDigits[NIntegrate[HarmonicNumber[x]/x^2, {x, 1, Infinity}, WorkingPrecision -> 120]][[1]]
PROG
(PARI) sumpos(k = 1, log(k+1)/k^2)
(PARI) sumalt(k = 3, (-1)^(k+1) * zeta(k)/(k-2)) - zeta'(2)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Feb 04 2024
STATUS
approved