login
A369757
The number of divisors of the smallest cubefull exponentially odd number that is divisible by n.
3
1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 6, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 6, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 24, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 8, 16, 64, 4, 16, 16, 64, 4, 16, 4
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(A356192(n)).
Multiplicative with a(p^e) = max(e,3) + 1 if e is odd, and e+2 if e is even.
a(n) >= A000005(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 3/p^s - 1/p^(2*s) - 3/p^(3*s) + 2/p^(4*s)).
From Vaclav Kotesovec, Feb 02 2024: (Start)
Dirichlet g.f.: zeta(s)^4 * Product_{p prime} (1 + (7*p^(2*s) + 2*p^(3*s) - 6*p^(4*s) - 7*p^s + 2) / ((p^s+1)*p^(5*s))).
Sum_{k=1..n} a(k) = c * n*log(n)^3/6 + O(n*log(n)^2), where c = Product_{p prime} (1 - (6*p^4 - 2*p^3 - 7*p^2 + 7*p - 2) / ((p+1)*p^5)) = 0.124604542136592401049820049658828040278... (End)
MATHEMATICA
f[p_, e_] := If[OddQ[e], Max[e, 3] + 1, e + 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x%2, max(x, 3) + 1, x + 2), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 31 2024
STATUS
approved