login
A369661
Numbers k whose arithmetic derivative k' is of the form 4m+2, and k' has an even number of prime factors.
6
9, 21, 25, 33, 49, 57, 69, 85, 93, 121, 129, 133, 145, 169, 177, 205, 213, 217, 237, 249, 253, 265, 289, 309, 329, 361, 375, 393, 417, 445, 459, 469, 473, 489, 493, 505, 517, 529, 533, 553, 565, 573, 581, 597, 629, 633, 669, 685, 697, 713, 753, 781, 783, 793, 813, 817, 819, 841, 865, 869, 875, 889, 913, 933, 949, 961
OFFSET
1,1
COMMENTS
Equally, numbers k whose arithmetic derivative k' is congruent to 2 modulo 4 and A276085(k') is congruent to 3 modulo 4.
Numbers k such that A003415(k) is in A369966.
For all n >= 1, A003415((1/2)*A003415(a(n))) is odd.
LINKS
PROG
(PARI) \\ See A369660.
CROSSREFS
Setwise difference A327862 \ A369662.
Cf. A003415, A369660 (characteristic function), A369966.
Subsequences: A108181, A369663 (terms of the form 4m+3).
Sequence in context: A327862 A108181 A368696 * A340482 A324722 A295230
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 06 2024
STATUS
approved