login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369545
Expansion of g.f. A(x) satisfying A(x) = A( x^2*(1+x)^2 ) / (x*(1+x)).
7
1, 1, 1, 3, 4, 6, 13, 31, 72, 142, 255, 465, 868, 1666, 3361, 7099, 15430, 34044, 75547, 167389, 367849, 797275, 1698682, 3557446, 7341014, 14981954, 30363966, 61351570, 123962309, 250941549, 509475411, 1038043409, 2123698576, 4365471714, 9022527237, 18760483331, 39258381744
OFFSET
1,4
COMMENTS
The radius of convergence r of the g.f. A(x) solves r*(1+r)^2 = 1 where r = (((29 + sqrt(837))/2)^(1/3) + ((29 - sqrt(837))/2)^(1/3) - 2)/3 = 0.465571231876768...
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = A( x^2*(1+x)^2 ) / (x*(1+x)).
(2) R(x*(1+x)*A(x)) = x^2*(1+x)^2, where R(A(x)) = x.
(3) A(x) = x * Product_{n>=1} F(n), where F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2 for n >= 1.
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 13*x^7 + 31*x^8 + 72*x^9 + 142*x^10 + 255*x^11 + 465*x^12 + 868*x^13 + 1666*x^14 + ...
RELATED SERIES.
A(x)^2/x = x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 26*x^6 + 55*x^7 + 124*x^8 + 284*x^9 + 616*x^10 + ... + A369552(n)*x^n + ...
Let R(x) be the series reversion of A(x),
R(x) = x - x^2 + x^3 - 3*x^4 + 10*x^5 - 27*x^6 + 73*x^7 - 229*x^8 + 749*x^9 - 2364*x^10 + 7519*x^11 - 24827*x^12 + ...
then R(x) and g.f. A(x) satisfy:
(1) R(A(x)) = x,
(2) R(x*(1+x)*A(x)) = x^2*(1 + x)^2.
GENERATING METHOD.
Define F(n), a polynomial in x of order 4^(n-1), by the following recurrence:
F(1) = (1 + x),
F(2) = (1 + x^2 * (1+x)^2),
F(3) = (1 + x^4 * (1+x)^4 * F(2)^2),
F(4) = (1 + x^8 * (1+x)^8 * F(2)^4 * F(3)^2),
F(5) = (1 + x^16 * (1+x)^16 * F(2)^8 * F(3)^4 * F(4)^2),
...
F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
SPECIFIC VALUES.
A(t) = 1 at t = 0.4120046758325214384397473236003536598861660144927342909...
A(t) = 2*t at t = 0.3784692870047486765098838556524915548738750059484894725...
A(t) = 3*t at t = 0.4341759819254114048195281285997548356246123884244963574...
A(t) = 4*t at t = 0.4503991198003790196716692640273147965490188133038952185...
A(t) = 5*t at t = 0.4569468453244711249969175826010689125973557341955917137...
A(t) = 6*t at t = 0.4601365544772047206117359824349418391381182470957703685...
A(t) = 7*t at t = 0.4618937559082677697073270302481519549410810789191032971...
A(t) = 8*t at t = 0.4629494015907831262609899780911583211703795156858340575...
A(t) = 9*t at t = 0.4636260570981613757787278132015093203097054838324907566...
A(t) = 10*t at t = 0.464081935314930281442469188416597867797429631824213476...
PROG
(PARI) {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff( subst(F, x, x^2*(1 + x)^2 ) - x*(1 + x)*F , #A+1) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2024
STATUS
approved