login
A369426
The number of unitary divisors of n that are of the form p^p, where p is a prime.
3
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
LINKS
FORMULA
Additive with a(p^e) = 1 if p = e, and 0 otherwise.
a(n) > 0 if and only if n is in A100717.
a(A076265(n)) = n, and a(k) < n for all k < A076265(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^p - 1/p^(p+1)) = 0.14994839882703405849... .
MATHEMATICA
f[p_, e_] := If[e == p, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); sum(i = 1, #f~, if(f[i, 1] == f[i, 2], 1, 0)); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 23 2024
STATUS
approved