login
A369167
a(n) = A000688(n + A000688(n)).
2
1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 7, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 3, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3
OFFSET
1,3
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter XIII, page 478.
LINKS
Haihong Fan and Wenguang Zhai, A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups, Symmetry 2022, 14(9), 1755.
Haihong Fan and Wenguang Zhai, On some sums involving the counting function of nonisomorphic Abelian groups, Lithuanian Mathematical Journal, Vol. 63 (2023), pp. 166-180; arXiv preprint, arXiv:2204.02576 [math.NT], 2022.
Aleksandar Ivić, An asymptotic formula involving the enumerating function of finite abelian groups, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 3 (1992), pp. 61-66.
FORMULA
Sum_{k=1..n} a(k) = c * n + O(n^(k+eps)) for any eps > 0, where c > 0 is a constant and k = 11/12 (Ivić, 1992), 3/4 (Fan and Zhai, 2023), or 2/3 (Fan and Zhai, 2022).
MATHEMATICA
Table[FiniteAbelianGroupCount[n + FiniteAbelianGroupCount[n]], {n, 1, 100}]
PROG
(PARI) A000688(n) = vecprod(apply(numbpart, factor(n)[, 2]));
a(n) = A000688(n + A000688(n));
CROSSREFS
Sequence in context: A204988 A368332 A224765 * A160267 A115621 A326514
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 15 2024
STATUS
approved