login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369134
Triangle read by rows: T(n, k) = (-1)^(n + 1)*L(n) * M(n, k) where M is the inverse of the matrix generated by the triangle A368846 and L(n) is the lcm of the denominators of the terms in the n-th row of M.
7
-1, 0, 1, 0, 0, -1, 0, 0, 7, 3, 0, 0, -14, -6, -1, 0, 0, 693, 297, 55, 5, 0, 0, -30030, -12870, -2431, -260, -15, 0, 0, 4150146, 1778634, 337480, 37310, 2625, 105, 0, 0, -21441420, -9189180, -1745458, -194480, -14280, -714, -21
OFFSET
0,9
COMMENTS
As has been observed by T. Curtright, the absolute value of the nonzero terms in row n of the triangle is monotonically decreasing, and the absolute value of each nonzero term T(n, k) is greater than the sum of the absolute value of the terms in the tail of that row.
The sum of the n-th row divided by the lcm of the n-th row of A368848 is the Bernoulli number B(2*n).
LINKS
Thomas Curtright, Scale Invariant Scattering and the Bernoulli Numbers, arXiv:2401.00586 [math-ph], Jan 2024.
FORMULA
(Sum_{k=0..n} T(n, k)) / A369135(n) = Bernoulli(2*n).
T(n, 2) / T(n, 3) = 7 / 3 for n >= 3.
EXAMPLE
[0] [-1]
[1] [0, 1]
[2] [0, 0, -1]
[3] [0, 0, 7, 3]
[4] [0, 0, -14, -6, -1]
[5] [0, 0, 693, 297, 55, 5]
[6] [0, 0, -30030, -12870, -2431, -260, -15]
[7] [0, 0, 4150146, 1778634, 337480, 37310, 2625, 105]
[8] [0, 0, -21441420, -9189180, -1745458, -194480, -14280, -714, -21]
.
For n = 5:
(0 + 0 + 693 + 297 + 55 + 5) / 13860 = 5 / 66 = Bernoulli(10).
MATHEMATICA
A368846[n_, k_] := If[k == 0, Boole[n == 0], (-1)^(n + k) 2 Binomial[2 k - 1, n] Binomial[2 n + 1, 2 k]];
Map[# LCM @@ Denominator[#]&, MapIndexed[(-1)^First[#2] Take[#, First[#2]]&, Inverse[PadRight[Table[A368846[n, k], {n, 0, 10}, {k, 0, n}]]]]] (* Paolo Xausa, Jan 15 2024 *)
PROG
(SageMath)
M = matrix(ZZ, 32, 32, A368846).inverse()
def T(n, k):
L = (-1)**(n + 1)*lcm(M[n][k].denominator() for k in range(n + 1))
return L * M[n][k]
for n in range(9):
print([T(n, k) for k in range(n + 1)])
CROSSREFS
Cf. A368846, A368848, A369135, A369120 (row sums), A369121 (T(n,n)), A369122 (T(n,2)), A000367/A002445 (Bernoulli(2n)).
Sequence in context: A103237 A338305 A239120 * A021582 A098459 A171535
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 14 2024
STATUS
approved