login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369022
a(n) is the least start of a run of exactly n consecutive integers with the same maximal exponent in their prime factorization, or -1 if no such run exists.
2
1, 2, 5, 844, 30923, 671346, 8870025
OFFSET
1,2
COMMENTS
a(8) > 3.7*10^10.
a(8) <= 1770019255373287038727484868192109228824 which is the conjectured value of A219452(8)+1. - Giorgos Kalogeropoulos, Jan 15 2024
FORMULA
A051903(a(n)) >= k for 2^k <= n < 2^(k+1)-1.
MATHEMATICA
emax[n_] := Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; ind = Position[Differences[Table[emax[n], {n, 1, 10^6}]], _?(# != 0 &)] // Flatten; d = Differences[ind]; seq = {1}; Do[i = FirstPosition[d, k]; If[MissingQ[i], Break[]]; AppendTo[seq, ind[[i[[1]]]] + 1], {k, 2, Max[d]}]; seq
PROG
(PARI) emax(n) = vecmax(factor(n)[, 2]);
lista(len) = {my(v = vector(len), w = [0], m, c = 0, k = 2); while(c < len, e = emax(k); m = #w; if(e == w[m], w = concat(w, e), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [e]); k++); v; }
CROSSREFS
Similar sequences: A071125, A219452, A323253.
Sequence in context: A212590 A208212 A176117 * A078748 A051131 A306785
KEYWORD
nonn,hard,more
AUTHOR
Amiram Eldar, Jan 12 2024
STATUS
approved