login
A368931
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^3) ).
4
1, 2, 7, 31, 154, 819, 4560, 26244, 154874, 932074, 5698745, 35297535, 221016593, 1396717756, 8896798020, 57062237502, 368201804973, 2388587515239, 15568995139404, 101913055166811, 669678357109300, 4415837460391845, 29210203356645090
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(3*n-2*k+1,n-3*k).
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^3))/x)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 10 2024
STATUS
approved