login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of vertices in a regular 2n-gon when all vertices are connect by straight lines except for the n lines joining diametrically opposite vertices.
4

%I #6 Jan 06 2024 23:58:33

%S 2,4,12,48,150,288,728,1344,1782,3780,5852,7224,12350,17108,16620,

%T 30720,40018,46728,64676,80560,84462,121044,146280,163728,208250,

%U 245700,271836,335664,389006,404400,514352,587264,638022,756228,853300,933480,1074998,1200724,1295112,1485120,1645002

%N Number of vertices in a regular 2n-gon when all vertices are connect by straight lines except for the n lines joining diametrically opposite vertices.

%H Scott R. Shannon, <a href="/A368814/a368814.png">Image for n = 2</a>.

%H Scott R. Shannon, <a href="/A368814/a368814_1.png">Image for n = 3</a>.

%H Scott R. Shannon, <a href="/A368814/a368814_2.png">Image for n = 4</a>.

%H Scott R. Shannon, <a href="/A368814/a368814_3.png">Image for n = 5</a>.

%H Scott R. Shannon, <a href="/A368814/a368814_4.png">Image for n = 6</a>.

%H Scott R. Shannon, <a href="/A368814/a368814_5.png">Image for n = 10</a>.

%H Scott R. Shannon, <a href="/A368814/a368814_6.png">Image for n = 15</a>. Note that the maximum number of chord crossings on a single vertex is six for this 30-gon, which is one less than the maximum theoretical value of seven for the regular n-gon with all diagonals drawn; see A007569.

%F a(n) = A368815(n) - A368813(n) + 1 by Euler's formula.

%Y Cf. A368813 (regions), A368815 (edges), A368816 (k-gons), A368756, A007569.

%K nonn

%O 1,1

%A _Scott R. Shannon_, Jan 06 2024