login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = period length of the sequence A020639(n^k - 1), k >= 1.
1

%I #19 Jan 08 2024 05:58:08

%S 1,1,1,1,1,2,1,1,1,12,1,10,1,1,1,60,1,10,1,1,1,18,1,2,1,1,1,660,1,66,

%T 1,1,1,1,1,10,1,1,1,4620,1,6,1,1,1,660,1,2,1,1,1,31878,1,2,1,1,1,

%U 197340,1,5742,1,1,1,1,1,52026,1,1,1,440220,1,28014,1,1,1,4,1,2610,1,1,1,28014,1,2,1,1,1,3693690,1,2,1,1,1,1,1,7590,1,1,1,1642460820

%N a(n) = period length of the sequence A020639(n^k - 1), k >= 1.

%C For n = 2, the sequence A020639(n^k - 1) is not periodic (see A049479), but it is such for any n >= 3.

%C a(n) divides A058254(A000720(A020639(n-1))).

%H Max Alekseyev, <a href="/A368811/b368811.txt">Table of n, a(n) for n = 3..10000</a>

%F For odd n >= 3, a(n) = 1.

%e a(8) = 2 is the period length of A010705.

%e a(12) = 12 is the period length of A366717.

%o (PARI) { a368811(n) = my(r=[], z); forprime(p=2, factor(n-1)[1, 1], if(n%p==0, next); z=znorder(Mod(n, p)); if(!#r || vecmin(apply(x->z%x,r)), r=concat(r,[z])) ); lcm(r); }

%Y Cf. A010705, A020639, A049479, A058254, A366717.

%K nonn

%O 3,6

%A _Max Alekseyev_, Jan 06 2024