login
A368756
Number of vertices in the hyperoctahedral (or cocktail party) graph of order n.
6
2, 5, 17, 49, 151, 273, 693, 1249, 1711, 3525, 5529, 6777, 11711, 16133, 15937, 29121, 38227, 44561, 61985, 77041, 81423, 116165, 140997, 157649, 201211, 237125, 263449, 324689, 377359, 392185, 499789, 570241, 621255, 735493, 831537, 909097, 1048887, 1171013, 1265501, 1450081, 1608523
OFFSET
1,1
LINKS
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 3.
Scott R. Shannon, Image for n = 4.
Scott R. Shannon, Image for n = 5.
Scott R. Shannon, Image for n = 6.
Scott R. Shannon, Image for n = 9.
Scott R. Shannon, Image for n = 10.
Scott R. Shannon, Image for n = 15. Note this 30-gon still contains vertices with 7 chords crossing, so this maximum possible value is the same as the regular n-gon with all diagonals drawn; see A007569.
Eric Weisstein's World of Mathematics, Cocktail Party Graph.
FORMULA
a(n) = A368757(n) - A368755(n) + 1 by Euler's formula.
CROSSREFS
Cf. A368755 (regions), A368757 (edges), A368758 (k-gons), A007569, A129348, A193130, A282010.
Sequence in context: A074494 A051438 A376967 * A148401 A148402 A148403
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Jan 04 2024
STATUS
approved