login
A368216
Number of divisors of n that are antiharmonic numbers (A020487).
0
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
Differs from A046951 for n = 20, 40, 50, 60, 80, ....
FORMULA
a(p^k) = floor((k + 2)/2), p prime, k >= 1.
a(p*q) = 1, for p, q prime, p <> q.
a(A005117(k)) = 1, k >= 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A020487(k) = 1.784... . - Amiram Eldar, Jan 26 2024
EXAMPLE
a(1) = 1 because 1 has only one divisor 1 = A020487(1) antiharmonic number.
a(4) = 2 because 4 has divisors 1 = A020487(1) and 4 = A020487(2), antiharmonic numbers.
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[2, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)
PROG
(Magma) f:=func<n|DivisorSigma(2, n) mod DivisorSigma(1, n) eq 0>; [#[d:d in Divisors(k)|f(d)]:k in [1..100]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Jan 15 2024
STATUS
approved