login
A367837
Expansion of e.g.f. 1/(2 - x - exp(4*x)).
4
1, 5, 66, 1294, 33752, 1100504, 43060176, 1965653232, 102548623744, 6018735869824, 392498702352128, 28155539333730560, 2203322337542003712, 186790304541786160128, 17053569926181643921408, 1668166923908523824576512, 174057374767036007615922176
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} 4^k * binomial(n,k) * a(n-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 4^j*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 02 2023
STATUS
approved