login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367796
Primes p such that the sum of p and its reversal is the square of a prime.
4
2, 29, 47, 83, 20147, 23117, 24107, 63113, 80141, 81131, 261104399, 262005299, 262104299, 262203299, 263302199, 264203099, 264302099, 264500099, 270401489, 271500389, 273104189, 273302189, 274401089, 282203279, 284302079, 284500079, 291104369, 291203369, 292005269, 293005169, 293104169, 294302069
OFFSET
1,1
COMMENTS
Terms > 83 have an odd number of digits and an even first digit.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..5743 (terms <= 10^15)
David A. Corneth, PARI program
EXAMPLE
A056964(a(n)) = 121 = 11^2 for 2 <= n <= 4.
A056964(a(n)) = 94249 = 307^2 for 5 <= n <= 10.
A056964(a(n)) = 1254505561 = 35419^2 for 11 <= n <= 71.
MAPLE
digrev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
filter:= proc(t) local v;
v:= sqrt(t+digrev(t));
v::integer and isprime(v)
end proc:
R:= 2, 29, 47, 83: count:= 4: flag:= true:
for d from 3 to 9 by 2 do
p:= prevprime(10^(d-1));
for i from 1 do
p:= nextprime(p);
p1:= floor(p/10^(d-1));
if p1::odd then p:= nextprime((p1+1)*10^(d-1)) fi;
if p > 10^d then break fi;
if filter(p) then
count:= count+1; R:= R, p;
fi od od:
R;
MATHEMATICA
Select[Prime[Range[10^6]], PrimeQ[Sqrt[#+FromDigits[Reverse[IntegerDigits[#]]]]] &] (* Stefano Spezia, Dec 10 2023 *)
PROG
(PARI) \\ See PARI link
CROSSREFS
Cf. A056964, A067030, A061783. Subset of A367793.
Sequence in context: A105893 A366692 A059799 * A142969 A281546 A115448
KEYWORD
nonn,base
AUTHOR
Robert Israel, Nov 30 2023
STATUS
approved