OFFSET
1,2
COMMENTS
First differs from A344586 in lacking 120.
We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
First differs from A212165 at n=73: A212165(73)=120 is not a term of this. - Amiram Eldar, Dec 04 2023
EXAMPLE
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
23: {9}
24: {1,1,1,2}
MATHEMATICA
mmk[n_Integer]:= Product[Min[#]^Length[#]&[First/@Select[FactorInteger[n], Last[#]==k&]], {k, Union[Last/@FactorInteger[n]]}];
Select[Range[100], Divisible[#, mmk[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2023
STATUS
approved