login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367517
a(n) = Product_{1 <= i < j <= n} (i^3 + j^3).
3
1, 9, 8820, 3756261600, 1808353823416358400, 2039434890206782239939575808000, 9701283544768145414379038964290421034844160000, 318565016660642285381616434022976430918222575100233223503872000000
OFFSET
1,2
FORMULA
a(n) ~ c * 2^(n^2 + n/2) * n^(3*n*(n-1)/2 - 9/8) / exp(9*n^2/4 - Pi*n*(n+1) / (2*sqrt(3)) - 3*n/2), where c = 0.1474592465511237361695489773766942970580292170583524962797073759996256...
a(n) = A093883(n) * A203312(n).
MATHEMATICA
Table[Product[Product[i^3 + j^3, {i, 1, j-1}], {j, 2, n}], {n, 1, 10}]
PROG
(Python)
from math import prod
def A367517(n): return prod(i**3+j**3 for i in range(1, n) for j in range(i+1, n+1)) # Chai Wah Wu, Nov 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 21 2023
STATUS
approved