login
A367180
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^2) - 1)/A(x).
7
1, 1, 3, 19, 187, 2491, 41951, 855387, 20491395, 564179371, 17555839639, 609337562923, 23340215770235, 978038556122811, 44506423393073487, 2185725954288076987, 115224508775345033779, 6490005347933921581195, 388973650645651854960455
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (2*n-k)!/(2*n-2*k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (2*n-k)!/(2*n-2*k+1)!*stirling(n, k, 2));
CROSSREFS
Cf. A349601.
Sequence in context: A242369 A202617 A143633 * A326553 A052888 A141623
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 08 2023
STATUS
approved