login
A367162
E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)) - 1).
6
1, 1, 7, 94, 1917, 52806, 1837511, 77372590, 3826454617, 217450806550, 13964683107195, 1000222945246878, 79058281093939109, 6835704081028512886, 641830800234353986639, 65035909964873069979598, 7073810997780630959477937, 822049309574436641341233366
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (n+2*k)!/(n+k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (n+2*k)!/(n+k+1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2023
STATUS
approved