login
A366427
a(n) = denominator(denominator(Bernoulli''(n, x)) / denominator(Bernoulli(n, 1))).
3
1, 2, 6, 1, 30, 1, 42, 1, 10, 1, 66, 1, 2730, 1, 2, 1, 510, 1, 798, 1, 110, 1, 138, 1, 546, 1, 2, 1, 870, 1, 14322, 1, 170, 1, 6, 1, 1919190, 1, 2, 1, 13530, 1, 1806, 1, 46, 1, 282, 1, 1326, 1, 22, 1, 1590, 1, 798, 1, 290, 1, 354, 1, 56786730, 1, 2, 1, 102, 1
OFFSET
0,2
FORMULA
a(n) = denominator(A366168(n) / A027642(n)).
MAPLE
seq(denom(denom(diff(diff(bernoulli(n, x), x), x))/denom(bernoulli(n, 1))), n = 0..65);
PROG
(PARI) a(n) = denominator(lcm(apply(denominator, Vec(deriv(deriv(bernpol(n))))))/denominator(subst(bernpol(n, x), x, 1))); \\ Michel Marcus, Oct 14 2023
CROSSREFS
Cf. A366168/A027642, A366426 (numerator), A366570/A366152 (1st derivative).
Sequence in context: A364374 A291646 A366152 * A366571 A027642 A249306
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Oct 13 2023
STATUS
approved