login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366395
a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(floor(n/k)+2,3).
5
1, 3, 10, 16, 32, 49, 78, 100, 152, 194, 261, 318, 410, 489, 631, 717, 871, 1014, 1205, 1351, 1617, 1806, 2083, 2300, 2641, 2903, 3333, 3612, 4048, 4450, 4947, 5289, 5923, 6367, 7041, 7548, 8252, 8805, 9683, 10245, 11107, 11873, 12820, 13497, 14719, 15526, 16655
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} binomial(k+1,2) * (floor(n/k) mod 2).
G.f.: -1/(1-x) * Sum_{k>=1} (-x)^k/(1-x^k)^3 = 1/(1-x) * Sum_{k>=1} binomial(k+1,2) * x^k/(1+x^k).
MATHEMATICA
Array[Sum[(-1)^(k - 1)*Binomial[Floor[#/k] + 2, 3], {k, #}] &, 56] (* Michael De Vlieger, Oct 25 2023 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k-1)*binomial(n\k+2, 3));
CROSSREFS
Partial sums of A365007.
Cf. A364970.
Sequence in context: A063109 A083684 A141497 * A059911 A160375 A300017
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 24 2023
STATUS
approved