login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366388
The number of edges minus the number of leafs in the rooted tree with Matula-Goebel number n.
6
0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 3, 1, 2, 1, 3, 0, 2, 2, 1, 2, 2, 3, 3, 1, 4, 2, 3, 1, 3, 3, 4, 0, 4, 2, 3, 2, 2, 1, 3, 2, 3, 2, 2, 3, 4, 3, 4, 1, 2, 4, 3, 2, 1, 3, 5, 1, 2, 3, 3, 3, 3, 4, 3, 0, 4, 4, 2, 2, 4, 3, 3, 2, 3, 2, 5, 1, 4, 3, 4, 2, 4, 3, 4, 2, 4, 2, 4, 3, 2, 4, 3, 3, 5, 4, 3, 1, 5, 2, 5, 4, 3, 3, 4, 2, 4
OFFSET
1,5
COMMENTS
Number of iterations of A366385 needed to reach the nearest power of 2.
FORMULA
Totally additive with a(2) = 0, and for n > 1, a(prime(n)) = 1 + a(n).
a(n) = A196050(n) - A109129(n).
a(2n) = a(A000265(n)) = a(n).
EXAMPLE
See illustrations in A061773.
MATHEMATICA
Array[-1 + Length@ NestWhileList[PrimePi[#2]*#1/#2 & @@ {#, FactorInteger[#][[-1, 1]]} &, #, ! IntegerQ@ Log2[#] &] &, 105] (* Michael De Vlieger, Oct 23 2023 *)
PROG
(PARI) A366388(n) = if(n<=2, 0, if(isprime(n), 1+A366388(primepi(n)), my(f=factor(n)); (apply(A366388, f[, 1])~ * f[, 2])));
(PARI)
A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
A366385(n) = { my(gpf=A006530(n)); primepi(gpf)*(n/gpf); };
A366388(n) = if(n && !bitand(n, n-1), 0, 1+A366388(A366385(n)));
CROSSREFS
Cf. A109129 (gives the exponent of the nearest power of 2 reached), A196050 (distance to the farthest power of 2, which is 1).
Cf. also A329697, A331410.
Sequence in context: A347386 A331410 A336928 * A114638 A123340 A360455
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 23 2023
STATUS
approved