OFFSET
3,2
COMMENTS
"In general position" implies that the internal lines (or chords) formed from the n*k edge points only have simple intersections; there is no interior points where three or more such chords meet. Note that for even-n n-gons, with n>=6, the chords from the n corner points do create non-simple intersections.
Note that although the number of regions with a given number of edges in the graph will vary as the edge points change position, the total number of regions will stay constant as long as all internal vertices created from the edge-point chords remain simple.
LINKS
Scott R. Shannon, Image for T(5,3).
Scott R. Shannon, Image for T(6,2).
Scott R. Shannon, Image for T(8,2).
Scott R. Shannon, Image for T(10,2).
FORMULA
Conjectured:
T(3,k) = A367118(k) = (9/4)*k^4 + 3*k^3 + (15/4)*k^2 + 3*k + 1.
T(4,k) = A367121(k) = (17/2)*k^4 + 19*k^3 + (43/2)*k^2 + 14*k + 4.
T(5,k) = (45/2)*k^4 + 60*k^3 + 70*k^2 + (85/2)*k + 11.
T(6,k) = (195/4)*k^4 + (285/2)*k^3 + (687/4)*k^2 + 102*k + 24.
T(7,k) = (371/4)*k^4 + 287*k^3 + (1421/4)*k^2 + 210*k + 50.
T(8,k) = 161*k^4 + 518*k^3 + 655*k^2 + 388*k + 80.
T(9,k) = 261*k^4 + 864*k^3 + (2223/2)*k^2 + (1323/2)*k + 154.
T(10,k) = (1605/4)*k^4 + (2715/2)*k^3 + (7085/4)*k^2 + 1060*k + 220.
EXAMPLE
The table begins:
1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417,...
4, 67, 406, 1441, 3796, 8299, 15982, 28081, 46036, 71491, 106294, 152497,...
11, 206, 1216, 4211, 10901, 23536, 44906, 78341, 127711, 197426, 292436,...
24, 489, 2835, 9672, 24780, 53109, 100779, 175080, 284472, 438585, 648219,...
50, 995, 5671, 19139, 48686, 103825, 196295, 340061, 551314, 848471, 1252175,...
80, 1802, 10196, 34166, 86480, 183770, 346532, 599126, 969776, 1490570,...
154, 3052, 17011, 56611, 142696, 302374, 569017, 982261, 1588006, 2438416,...
220, 4810, 26705, 88495, 222400, 470270, 883585, 1523455, 2460620, 3775450,...
375, 7305, 40096, 132243, 331431, 699535, 1312620, 2260941, 3648943, 5595261,...
444, 10509, 57810, 190263, 475980, 1003269, 1880634, 3236775, 5220588, 8001165,...
781, 14938, 81082, 265747, 663391, 1396396, 2615068, 4497637, 7250257,...
952, 20335, 110439, 361354, 900844, 1894347, 3544975, 6093514, 9818424,...
1456, 27391, 147421, 480931, 1197076, 2514781, 4702741, 8079421, 13013056,...
1696, 35716, 192552, 627484, 1560352, 3275556, 6122056, 10513372,...
.
.
.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Scott R. Shannon and N. J. A. Sloane, Nov 09 2023
STATUS
approved