login
A366253
Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of regions in the resulting planar graph.
3
1, 13, 4, 82, 67, 11, 307, 406, 206, 24, 841, 1441, 1216, 489, 50, 1891, 3796, 4211, 2835, 995, 80, 3718, 8299, 10901, 9672, 5671, 1802, 154, 6637, 15982, 23536, 24780, 19139, 10196, 3052, 220, 11017, 28081, 44906, 53109, 48686, 34166, 17011, 4810, 375
OFFSET
3,2
COMMENTS
"In general position" implies that the internal lines (or chords) formed from the n*k edge points only have simple intersections; there is no interior points where three or more such chords meet. Note that for even-n n-gons, with n>=6, the chords from the n corner points do create non-simple intersections.
Note that although the number of regions with a given number of edges in the graph will vary as the edge points change position, the total number of regions will stay constant as long as all internal vertices created from the edge-point chords remain simple.
LINKS
Scott R. Shannon, Image for T(5,3).
Scott R. Shannon, Image for T(6,2).
Scott R. Shannon, Image for T(8,2).
Scott R. Shannon, Image for T(10,2).
FORMULA
T(n,k) = A367190(n,k) - A367183(n,k) + 1 by Euler's formula.
Conjectured:
T(3,k) = A367118(k) = (9/4)*k^4 + 3*k^3 + (15/4)*k^2 + 3*k + 1.
T(4,k) = A367121(k) = (17/2)*k^4 + 19*k^3 + (43/2)*k^2 + 14*k + 4.
T(5,k) = (45/2)*k^4 + 60*k^3 + 70*k^2 + (85/2)*k + 11.
T(6,k) = (195/4)*k^4 + (285/2)*k^3 + (687/4)*k^2 + 102*k + 24.
T(7,k) = (371/4)*k^4 + 287*k^3 + (1421/4)*k^2 + 210*k + 50.
T(8,k) = 161*k^4 + 518*k^3 + 655*k^2 + 388*k + 80.
T(9,k) = 261*k^4 + 864*k^3 + (2223/2)*k^2 + (1323/2)*k + 154.
T(10,k) = (1605/4)*k^4 + (2715/2)*k^3 + (7085/4)*k^2 + 1060*k + 220.
EXAMPLE
The table begins:
1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417,...
4, 67, 406, 1441, 3796, 8299, 15982, 28081, 46036, 71491, 106294, 152497,...
11, 206, 1216, 4211, 10901, 23536, 44906, 78341, 127711, 197426, 292436,...
24, 489, 2835, 9672, 24780, 53109, 100779, 175080, 284472, 438585, 648219,...
50, 995, 5671, 19139, 48686, 103825, 196295, 340061, 551314, 848471, 1252175,...
80, 1802, 10196, 34166, 86480, 183770, 346532, 599126, 969776, 1490570,...
154, 3052, 17011, 56611, 142696, 302374, 569017, 982261, 1588006, 2438416,...
220, 4810, 26705, 88495, 222400, 470270, 883585, 1523455, 2460620, 3775450,...
375, 7305, 40096, 132243, 331431, 699535, 1312620, 2260941, 3648943, 5595261,...
444, 10509, 57810, 190263, 475980, 1003269, 1880634, 3236775, 5220588, 8001165,...
781, 14938, 81082, 265747, 663391, 1396396, 2615068, 4497637, 7250257,...
952, 20335, 110439, 361354, 900844, 1894347, 3544975, 6093514, 9818424,...
1456, 27391, 147421, 480931, 1197076, 2514781, 4702741, 8079421, 13013056,...
1696, 35716, 192552, 627484, 1560352, 3275556, 6122056, 10513372,...
.
.
.
CROSSREFS
Cf. A367118 (first row), A367121 (second row), A007678 (first column), A367183 (vertices), A367190 (edges).
Sequence in context: A056139 A106293 A046734 * A226376 A222165 A277125
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved