login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366176
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x)^2.
2
1, 1, 5, 27, 161, 1030, 6921, 48190, 344669, 2517303, 18695908, 140771477, 1072130229, 8244820518, 63931532190, 499308229278, 3924204043333, 31012883225891, 246304580923299, 1964794017165157, 15735626383151876, 126476316316459089, 1019883740031357941
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} binomial(n+k-1,n-k) * binomial(3*k,k)/(2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+k-1, n-k)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Partial sums give A199475.
Sequence in context: A355252 A337011 A081924 * A368317 A138772 A258789
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 03 2023
STATUS
approved