login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of ways to express n^n in the form a^b for integers a and b.
2

%I #21 Oct 04 2023 19:04:08

%S 3,2,7,2,6,2,14,9,6,2,10,2,6,4,13,2,9,2,10,4,6,2,14,9,6,5,10,2,12,2,

%T 22,4,6,4,21,2,6,4,14,2,12,2,10,6,6,2,18,9,9,4,10,2,12,4,14,4,6,2,20,

%U 2,6,6,30,4,12,2,10,4,12,2,21,2,6,6,10,4,12,2,18,25,6,2,20,4,6,4,14

%N The number of ways to express n^n in the form a^b for integers a and b.

%C Finding the first appearance of 2023 was the subject of an Internet puzzle in September 2023. (See web link.) The least such n for which a(n) = 2023 is 26273633422851562500 = 2^2 * 3^16 * 5^16.

%H Jane Street, <a href="https://www.janestreet.com/puzzles/getting-from-a-to-b-index/">Getting from a to b</a>, September 2023.

%e a(4) = 7, as "4^4 = a^b" has 7 integer solutions: 2^8, (-2)^8, 4^4, (-4)^4, 16^2, (-16)^2, 256^1.

%p a:= n-> add(2-irem(d, 2), d=numtheory[divisors](

%p igcd(map(i-> i[2], ifactors(n)[2])[])*n)):

%p seq(a(n), n=2..100); # _Alois P. Heinz_, Oct 02 2023

%t intPowCount[n_] := Module[{m, F, i, t},

%t m = n (GCD @@ FactorInteger[n][[All, 2]]);

%t t = 0;

%t While[Mod[m, 2] == 0,

%t t++;

%t m = m/2];

%t t = 2 t + 1;

%t F = FactorInteger[m][[All, 2]];

%t If[m > 1,

%t For[i = 1, i <= Length[F], i++,

%t t = t (F[[i]] + 1)];

%t ];

%t Return[t]]

%o (Python)

%o from math import gcd

%o from sympy import divisor_count, factorint

%o def A366161(n): return divisor_count((m:=n*gcd(*factorint(n).values()))>>(t:=(m-1&~m).bit_length()))*(t<<1|1) # _Chai Wah Wu_, Oct 04 2023

%Y Cf. A000312, A366196.

%K nonn

%O 2,1

%A _Andy Niedermaier_, Oct 02 2023