login
A365914
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+4) / (5*k+4)! ).
2
1, 0, 0, 0, 1, 0, 0, 0, 70, 1, 0, 0, 34650, 1430, 1, 0, 63063000, 5105100, 54740, 1, 305540235000, 40738698000, 1134117600, 1652090, 3246670537110001, 644180662125000, 33240837630000, 314389754250, 66475579247381221350, 18359921887357050001
OFFSET
0,9
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-4)/5)} binomial(n,5*k+4) * a(n-5*k-4).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+4)/(5*k+4)!))))
CROSSREFS
Cf. A365895.
Sequence in context: A365913 A278074 A075405 * A177808 A327024 A036183
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved