login
A365898
Expansion of e.g.f. exp( Sum_{k>=0} x^(4*k+5) / (4*k+5)! ).
4
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 126, 0, 0, 1, 2002, 126126, 0, 1, 32878, 11639628, 488864376, 1, 523754, 962159506, 164910249504, 5194672859377, 8390630, 79198593760, 44919303188760, 4895979169961881, 123378675217248882, 6434084214390, 11762691848427520
OFFSET
0,11
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/4)} binomial(n-1,4*k+4) * a(n-4*k-5).
E.g.f.: exp( -x + (sinh(x) + sin(x))/2 ).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\4, x^(4*k+5)/(4*k+5)!))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved