login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365805
a(n) = largest exponent m for which a representation of the form A163511(n) = k^m exists (for some k). a(0) = 0 by convention.
12
0, 1, 2, 1, 3, 2, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,3
COMMENTS
Equivalently, the largest exponent m for which a representation of the form A332214(n) = k^m exists (for some k), or similarly, for any other such variant of A163511, like A332817.
FORMULA
a(n) = A052409(A163511(n)).
If a(n) > 1 (or A052409(n) > 1), then a(n) <> A052409(n). [Consider A366370]
PROG
(PARI)
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); };
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
CROSSREFS
Cf. A365808 (positions of even terms), A365801 (multiples of 3), A365802 (multiples of 5), A366287 (multiples of 7), A366391 (multiples of 11).
Sequence in context: A064034 A231635 A366281 * A334749 A266640 A359350
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 01 2023
STATUS
approved