login
A365623
T(n,k) is the number of parking functions of length n with cars parking at most k spots away from their preferred spot; square array T(n,k), n>=0, k>=0, read by downward antidiagonals.
2
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 3, 13, 24, 1, 1, 3, 16, 75, 120, 1, 1, 3, 16, 109, 541, 720, 1, 1, 3, 16, 125, 918, 4683, 5040, 1, 1, 3, 16, 125, 1171, 9277, 47293, 40320, 1, 1, 3, 16, 125, 1296, 12965, 109438, 545835, 362880, 1, 1, 3, 16, 125, 1296, 15511, 166836, 1475691, 7087261, 3628800
OFFSET
0,6
FORMULA
T(n,k) = Sum_{i=0..n-1} binomial(n-1,i) * min(i+1,k+1) * T(i,k) * T(n-1-i,k) for n>0, T(0,k) = 1.
EXAMPLE
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 3, 3, 3, 3, 3, ...
6, 13, 16, 16, 16, 16, 16, ...
24, 75, 109, 125, 125, 125, 125, ...
120, 541, 918, 1171, 1296, 1296, 1296, ...
720, 4683, 9277, 12965, 15511, 16807, 16807, ...
...
MAPLE
T:= proc(n, k) option remember; `if`(n=0, 1, add(min(i+1, k+1)*
binomial(n-1, i)*T(i, k)*T(n-1-i, k), i=0..n-1))
end:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 13 2023
CROSSREFS
Columns k=0..1, 3..4 give: A000142, A000670, A365626, A365627.
Main diagonal gives A000272(n+1).
Cf. A264902.
Sequence in context: A162206 A075248 A359140 * A336707 A128325 A307883
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved