login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365522
Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.
1
6, 3, 8, 7, 0, 4, 5, 2, 8, 7, 7, 9, 8, 1, 8, 3, 6, 5, 5, 9, 7, 4, 7, 6, 7, 4, 6, 0, 5, 1, 2, 1, 6, 6, 0, 5, 7, 7, 8, 3, 1, 7, 2, 4, 0, 1, 9, 5, 1, 2, 3, 6, 1, 6, 3, 4, 6, 7, 4, 5, 9, 9, 2, 0, 3, 7, 5, 7, 5, 7, 5, 7, 5, 9, 7, 7, 7, 2, 5, 9, 8, 0, 3, 8, 1, 2, 1, 5, 3, 1, 5, 8, 1, 6, 5, 7, 0, 5, 4, 4, 0, 2, 5, 1, 6, 5, 6, 2, 7, 0, 9, 8, 6, 7, 5
OFFSET
0,1
COMMENTS
This sequence is also the decimal expansion of Sum_{k>=1} 1/(f(k) +g(k)), where f(k) and g(k) are respectively the k-th triangular and the 13-gonal numbers (A000217 and A051865).
LINKS
Michael Ian Shamos, A catalog of the real numbers (2011), p. 544.
Wikipedia, Polygonal number.
FORMULA
Equals Sum_{k>=1} 1/(6*k^2 - 4*k) [Shamos].
Equals - Integral_{x=0..1} log(1-x^6)/x^5 dx [Shamos].
EXAMPLE
0.63870452877981836559747674605121660577831724019512...
MATHEMATICA
RealDigits[(Pi*Sqrt[3] + 9*Log[3])/24, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
PROG
(PARI) (Pi*sqrt(3)+9*log(3))/24
(Magma) SetDefaultRealField(RealField(139)); R:= RealField(); (Pi(R)*Sqrt(3)+9*Log(3))/24; // G. C. Greubel, Mar 24 2024
(SageMath) numerical_approx((pi*sqrt(3)+9*log(3))/24, digits=139) # G. C. Greubel, Mar 24 2024
KEYWORD
nonn,cons
AUTHOR
STATUS
approved