login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365473
Odd semiprimes p*q such that A000120(p)*A000120(q) = A000120(p*q).
1
15, 51, 85, 95, 111, 119, 123, 187, 219, 221, 335, 365, 411, 447, 485, 511, 629, 655, 685, 697, 771, 831, 879, 959, 965, 1011, 1139, 1241, 1285, 1405, 1535, 1563, 1649, 1731, 1779, 1799, 1923, 1983, 2005, 2019, 2031, 2045, 2227, 2605, 2735, 2815, 2827, 2885, 3099, 3183, 3279, 3281, 3291, 3327
OFFSET
1,1
COMMENTS
If p is an odd prime < 2^m and A365475(m) exists, then p * A365475(m) is a term. Thus, if A365475 is infinite, this sequence contains infinitely many multiples of every odd prime.
LINKS
EXAMPLE
a(3) = 85 is a term because 85 = 5 * 17 is an odd semiprime with A000120(5) * A000120(17) = 2 * 2 = 4 = A000120(85).
MAPLE
g:= proc(n) convert(convert(n, base, 2), `+`) end proc:
N:= 10^4: # for terms <= N
S:= NULL: p:= 2:
while 3*p <= N do
p:= nextprime(p);
t:= g(p);
q:= 2:
do
q:= nextprime(q);
if q = p or q*p > N then break fi;
if g(q)*t = g(p*q) then S:= S, p*q fi;
od od:
sort([S]);
CROSSREFS
Intersection of A001358 and A235040, and intersection of A001358 and A365451.
Sequence in context: A020144 A339880 A235040 * A075933 A075929 A337295
KEYWORD
nonn,base
AUTHOR
Robert Israel, Sep 04 2023
STATUS
approved